Networks Fundamentals

Chapter 2

Network Fundamentals

Network Devices

Network Devices

- Network Components or network infrastructure contains three categories of hardware components:
- End devices
- Intermediate devices
- Network media

Common Data Network Symbols

End Devices

- The network devices that people are most familiar with are called end devices, or hosts. These devices form the interface between users and the underlying communication network.
- Some examples of end devices are as follows:
- Computers (workstations, laptops, file servers, web servers)
- Network printers
- Telephones and teleconferencing equipment
- Security cameras
- Mobile devices (such as smart phones, tablets, PDAs, and wireless debit/credit card readers and barcode scanners)

Network Devices – Hub

- The hub is a simple device that transmits an incoming frame out all the other ports on the hub.
- Connects a group of hosts (Multiple ports)
- Works at Layer 1 (Physical layer)
- Half-Duplex : connection transmits data in both directions but in only one direction at a time
- Amplifier
- Resends the data
- The hub is a (multi-port repeater).

Network Devices – Hub

- All devices are in the same collision domain.
- All devices are in the same broadcast domain.
- Devices share the same bandwidth.
- More end stations means more collisions.
- Biggest disadvantage: when one station talks, everyone hears it

Network Devices – Hub

Network Collision

If two workstations transmit at same time, collision occurs

- The switch has intelligence and can filter out and forward frames based on their NIC address.
- A switch maintains internal port table(s) that keep track of which frames arrived on which ports.
- A switch observes each frame that arrives at a port, extracts the source address from the frame, and places that address in the port's routing table.

- Amplifier
- Resends the data
- Multiple ports
- Full duplex : connection transmits data in both directions and at the same time
- helps to eliminate collisions.
- Works at Layer 2 (Data Link layer).

- Switch functions at layer 2:
 - Address learning: the switch learns the source MAC address of each frame received on an interface and enter it into a table called forward/filter table.
 - **Forward/filter decisions**: the switch looks at the destination MAC address for the frame received on an interface and finds the exit interface on the forward/filter table.
- Switches are used to connect end devices to a single LAN
- Switches can segment collision domains and provide enhanced

Network Devices – Router

- Works at Layer 3 (Network layer).
- Logical addressing
- Full duplex

- Routers are primarily devices used to interconnect networks LANs, WANs, and WLANs.
- Route packets of data from one network to another → Path determination
- Routers, by default, break up a broadcast domain → Broadcast control

Network Devices – Router

- Router is connected to two or more data lines from different networks (it has interfaces for different physical types of network connections (copper, fiber, wireless)
- Router checks the packet looking at the destination ip address
- It makes the decision based on the routing table
- Routing tables are populated with static and dynamic entries
- Routers exchange information about destination addresses using dynamic routing protocols

Network Devices – Router

Router Interfaces

- Data Interfaces:
 - Serial interface (WAN Interface) connects to another router.
 - Ethernet interface (LAN Interface) connects to a switch, bridge, hub, repeater.

Network Devices – WLC / AP

Access-points

- can be considered as wireless bridges/switches
- They allow mobile users to connect to the network
- Two types: Autonomous and Lightweight APs

Wireless LAN controller (WLC)

- The AP communicates using a special protocol called the Lightweight AP Protocol (LWAPP) to relay information to the WLC.
- LWAPP is encrypted

Network Devices – Security Appliances

- A firewall is a system or group of systems that manages access between two or more networks.
- Controls incoming and outgoing traffic by analyzing the data packets.
- Software or Hardware
- Firewall allows or drops the traffic according to the configured rules
- Can filter the traffic from Layer 3 up to 7

Network Devices – Security

- IPS/IDS can prevent from known network attacks and worms, reconnaissance, spyware, Trojans, backdoors, bots – detection based on the signatures
- Intrusion Detection Systems (IDS): analyze and monitor network traffic for signs that indicate attackers are using a known cyberthreat to infiltrate or steal data from your network(Just alarm).
- Intrusion Prevention Systems (IPS): analyze and monitor network traffic as a firewall, between the outside world and the internal network.(take action)

Data Transmission

- There are three common methods of signal transmission used in networks:
 - Electrical signals : Transmission is achieved by representing data as electrical pulses
 - **Optical signals :**Transmission is achieved by converting the electrical signals into light pulses.
 - Wireless signals : Transmission is achieved by using infrared, microwave, or radio waves through the air.

Network Media Types

- Communication transmits across a network on media.
- Modern networks primarily use three types of media to interconnect devices.
 - Metal wires within cables Data is encoded into electrical impulses.
 - Glass or plastic fibers within cables (fiber-optic cable) Data is encoded into pulses of light.
 - Wireless transmission Data is encoded via modulation of specific frequencies of electromagnetic waves.

Network Media Types

 The three most common network cables are twistedpair cable, coaxial cable, and fiber-optic cable.

Twisted-Pair Cable

Coaxial Cable

Twisted-Pair Cables

- Ethernet technology generally uses twisted-pair cables to interconnect devices.
- The networks in most homes and schools are wired with twisted-pair copper cable.
- Most common form of wire
- This type of cable is inexpensive and readily available.
- Twisted-pair cable uses pulses of electricity to transmit data.
- There are two commonly installed types of twisted-pair cable:
 - Unshielded twisted-pair (UTP)
 - Shi

Twisted-Pair Cables

Table 3-1

A summary of the characteristics of twisted pair wires

UTP Category	Typical Use	Maximum Data Transfer Rate	Maximum Transmission Range	Advantages	Disadvantages
Category 1	Telephone wire	<100 kbps	5–6 kilometers (3–4 miles)	Inexpensive, easy to install and interface	Security, noise, obsolete
Category 2	T-1, ISDN	<2 Mbps	5–6 kilometers (3–4 miles)	Same as Category 1	Security, noise, obsolete
Category 3	Telephone circuits	10 Mbps	100 m (328 ft)	Same as Category 1, with less noise	Security, noise
Category 4	LANs	20 Mbps	100 m (328 ft)	Same as Category 1, with less noise	Security, noise, obsolete
Category 5	LANs	100 Mbps (100 MHz)	100 m (328 ft)	Same as Category 1, with less noise	Security, noise
Category 5e	LANs	250 Mbps per pair (125 MHz)	100 m (328 ft)	Same as Category 5. Also includes specifications for connectors, patch cords, and other components	Security, noise
Category 6	LANs	250 Mbps per pair (250 MHz)	100 m (328 ft)	Higher rates than Category 5e, less noise	Security, noise, cost
Category 7	LANs	600 MHz	100 m (328 ft)	High data rates	Security, noise, cost

Coaxial Cable

- A single wire wrapped in a foam insulation surrounded by a braided metal shield, then covered in a plastic jacket. Cable comes in various thicknesses.
- Cable TV and Satellite Cables
- It was one of the earliest network cabling types developed.
- Coaxial cable (or coax) carries data in the form of electrical signals.
- It provides improved shielding compared to UTP and can therefore carry more data.

Coaxial Cable

- It is used by cable television companies to provide service and for connecting the various components that make up satellite communication systems.
- It is used as a high-frequency transmission line to carry highfrequency or broadband signals.
- More expensive than twisted pair

- A thin glass cable approximately a little thicker than a human hair surrounded by a plastic coating and packaged into an insulated cable.
- Fiber optic cable can carry the highest data rate for the longest distances but more expensive.
- Fiber-optic cables transmit data using pulses of light.
- Fiber-optic cable is constructed of either glass or plastic.

- Parts of a fiber-optical cable are:
- Jacket protects the fiber against abrasion, moisture, and other contaminants.
- Strengthening Material Surrounds the buffer, prevents the fiber cable from being stretched when it is being pulled
- **Buffer** Used to help shield the core and cladding from damage.
- **Cladding** Made from slightly different chemicals than those used to create the core. It tends to act like a mirror.
- **Core** The light transmission element at the center of the optical fiber. Light pulses travel through the fiber core.

- Fiber-optic cable is capable of supporting millions of bits per second for 1000s of meters.
- Thick cable (62.5/125 microns) causes more ray collisions, so you have to transmit slower. This is step index multimode fiber. Typically use LED for light source, shorter distance transmissions.
- Thin cable (8.3/125 microns) very little reflection, fast transmission, typically uses a laser, longer transmission distances; known as single mode fiber.

- Fiber-optic cable is susceptible to :
- **Reflection** (where the light source bounces around inside the cable)
- Refraction (where the light source passes out of the core and into the surrounding cladding)

Network Cables

Table 3-3 A summary of the characteristics of conducted media

Type of Conducted Medium	Typical Use	Maximum Data Rate	Maximum Transmission Range	Advantages	Disadvantages
Twisted pair Category 1, 3	Telephone systems	<2 Mbps	5–6 kilometers (3–4 miles)	Inexpensive, common	Noise, security, obsolete
Twisted pair Category 5, 5e, 6, 7	LANs	100–1000 Mbps	100 m (328 feet)	Inexpensive, versatile	Noise, security
Thin Coaxial Cable (baseband single channel)	LANs	10 Mbps	100 m (328 feet)	Low noise	Security
Thick Coaxial Cable (broadband multichannel)	LANs, cable TV, long-distance telephone, short- run computer system links	10–100 Mbps	5–6 kilometers (3–4 miles) (at lower data rates)	Low noise, multiple channels	Security
LED Fiber-Optic	Data, video, audio, LANs	Gbps	300 meters (approx. 1000 feet)	Secure, high capacity, low noise	Interface expensive but decreasing in cost
Laser Fiber-Optic	Data, video, audio, WANs, MANs	100s Gbps	100 kilometers (approx. 60 miles)	Secure, high capacity, very low noise	Interface expensive

Wireless Media

 Radio, satellite transmissions, and infrared light are all different forms of electromagnetic waves that are used to transmit data.

Terrestrial Microwave Transmission

- Land-based, line-of-sight transmission
- Approximately 20-30 miles between towers
- Transmits data at hundreds of millions of bits per second
- Signals will not pass through solid objects
- Popular with telephone companies and business to business transmissions

Wireless Media

Satellite Microwave Transmission

- Similar to terrestrial microwave except the signal travels from a ground station on earth to a satellite and back to another ground station.
- Can also transmit signals from one satellite to another.
- Satellites can be classified by how far out into orbit each one is (LEO, MEO, GEO, and HEO)

Wireless Media

- LEO (Low-Earth-Orbit) 100 to 1000 miles out
 - Used for wireless e-mail, special mobile telephones, pagers, spying, videoconferencing
- MEO (Middle-Earth-Orbit) 1000 to 22,300 miles
 - Used for GPS (global positioning systems) and government
- GEO (Geosynchronous-Earth-Orbit) 22,300 miles
 - Always over the same position on earth (and always over the equator)
 - Used for weather, television, government operations
- HEO (Highly Elliptical Earth orbit) satellite follows an elliptical orbit
 - Used by the military for spying and by scientific organizations for photographing celestial bodies

